Performance Evaluation of Main-Memory R-tree Variants
نویسندگان
چکیده
There have been several techniques proposed for improving the performance of main-memory spatial indexes, but there has not been a comparative study of their performance. In this paper we compare the performance of six main-memory R-tree variants: R-tree, R*-tree, Hilbert R-tree, CR-tree, CR*tree, and Hilbert CR-tree. CR*-trees and Hilbert CR-trees are respectively a natural extension of R*-trees and Hilbert R-trees by incorporating CR-trees’ quantized relative minimum bounding rectangle (QRMBR) technique. Additionally, we apply the optimistic, latch-free index traversal (OLFIT) concurrency control mechanism for B-trees to the R-tree variants while using the GiST-link technique. We perform extensive experiments in the two categories of sequential accesses and concurrent accesses, and pick the following best trees. In sequential accesses, CR*-trees are the best for search, Hilbert R-trees for update, and Hilbert CR-trees for a mixture of them. In concurrent accesses, Hilbert CR-trees for search if data is uniformly distributed, CR*-trees for search if data is skewed, Hilbert R-trees for update, and Hilbert CR-trees for a mixture of them. We also provide detailed observations of the experimental results, and rationalize them based on the characteristics of the individual trees. As far as we know, our work is the first comprehensive performance study of mainmemory R-tree variants. The results of our study provide a useful guideline in selecting the most suitable index structure in various cases.
منابع مشابه
Similarity Indexing: Algorithms and Performance
Efficient indexing support is essential to allow content-based image and video databases using similaritybased retrieval to scale to large databases (tens of thousands up to millions of images). In this paper, we take an in depth look at this problem. One of the major difficulties in solving this problem is the high dimension (6-100) of the feature vectors that are used to represent objects. We...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملFAST: A Generic Framework for Flash-Aware Spatial Trees
Spatial tree index structures are crucial components in spatial data management systems, designed with the implicit assumption that the underlying external memory storage is the conventional magnetic hard disk drives. This assumption is going to be invalid soon, as flash memory storage is increasingly adopted as the main storage media in mobile devices, digital cameras, embedded sensors, and no...
متن کاملRegister Efficient Memory Allocator for GPUs
We compare four existing dynamic memory allocators optimized for GPUs and show their strengths and weaknesses. In the measurements we use three generic evaluation tests proposed in the literature and add one with a real workload where dynamic memory allocation is used for building the kd-tree data structure. Following the performance analysis we propose a new dynamic memory allocator and its va...
متن کامل